

# Homework 8

Joe Puccio

February 2, 2022

## Exercise 4.3.1

(a) Let  $\epsilon > 0$ ,  $|f(x) - f(c)| = |\sqrt[3]{x} - 0| < \epsilon$  so letting  $\delta = \epsilon^3$  will ensure that  $|x - 0| < \delta \Rightarrow |\sqrt[3]{x} - 0| < \epsilon$ .

(b) Using the identity given in the problem, we can set  $a = \sqrt[3]{x}$  and  $b = \sqrt[3]{c}$  where  $c$  is the point being approached in the domain. Multiplying  $|\sqrt[3]{x} - \sqrt[3]{c}|$  by  $\frac{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}}{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}}$  yields  $\frac{|x-c|}{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}} \leq \frac{|x-c|}{\sqrt[3]{c^2}}$  so setting  $\delta = \sqrt[3]{c^2}\epsilon$  will ensure that if  $|x - c| < \delta$  then  $|\sqrt[3]{x} - \sqrt[3]{c}| < \epsilon$ .

## Exercise 4.3.3

Because  $|ax + b - ac + b| = |ax - ac| = a|x - c|$  then  $|x - c| < \frac{\epsilon}{a}$  for an arbitrary  $\epsilon$  so setting  $\delta = \frac{\epsilon}{a}$  will ensure that if  $|x - c| < \delta$  then  $|(ax+b) - (ac+b)| < \epsilon$ .

## Exercise 4.3.7

The set  $K$  defines the roots of the function  $h(x)$ .

## Exercise 4.3.8

## Exercise 4.3.9

(a) We know that  $|f(x) - f(y)| \leq c|x - y|$  and we want to show that  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ . From  $|f(x) - f(y)| \leq c|x - y|$  we can say  $c|x - y| \leq \epsilon$  and  $|x - y| < \frac{\epsilon}{c}$  so we set  $\delta = \frac{\epsilon}{c}$  and we can be sure that  $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$ .

(b) Given an equation such that  $|f(x) - f(y)| \leq c|x - y|$ , we know that  $f(x)$  has to be an equation of degree one with a slope  $-1 < c < 1$ . Because of this constraint, we know that a sequence defined recursively would be decreasing strictly and absolutely ( $|y_{n+1}| < |y_n|$ ) Because of this condition, we know that